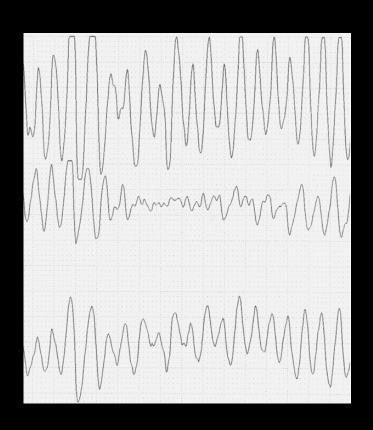
My Favorite Approach for Ventricular Tachycardia Ablation in Patients with Ischemic Heart and Low EF


Professor Shih-Ann Chen

Division of Cardiology, Taipei Veterans General Hospital National Yang-Ming University, Taipei, Taiwan

Electrical Storm

- Three distinct episodes of sustained VT or VF within the last 24 hours
- Occurrence of incessant VT for at least 12 hours
- ≥3 shocks in the last 24 hours (separated by≥5 min)

The Development of Electrical Storm

Arrhythmia mechanism

Reentry

Automaticity

Trigger activity

Block/cell-to-cell uncoupling

Anatomic/Functional substrate

CAD

CM (HCM, DCM)

ARVD; VHD

Congenital heart

Primary electrophysiological

Neurohumoral

Developmental

Inflammatory/infiltrative, neoplastic, degenerative

EMD

Asystole VT/VF

Transient initiating events

Neuro/endocrine

Drugs

Electrolytes, pH, pO₂

Ischemia/reperfusion

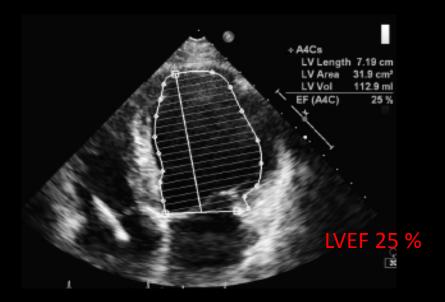
Hemodynamic

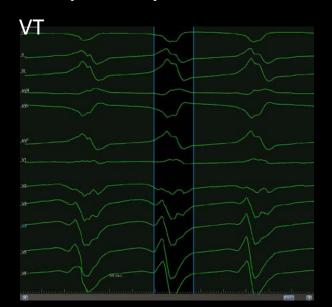
Stretch

Arising/Stress/Sleep

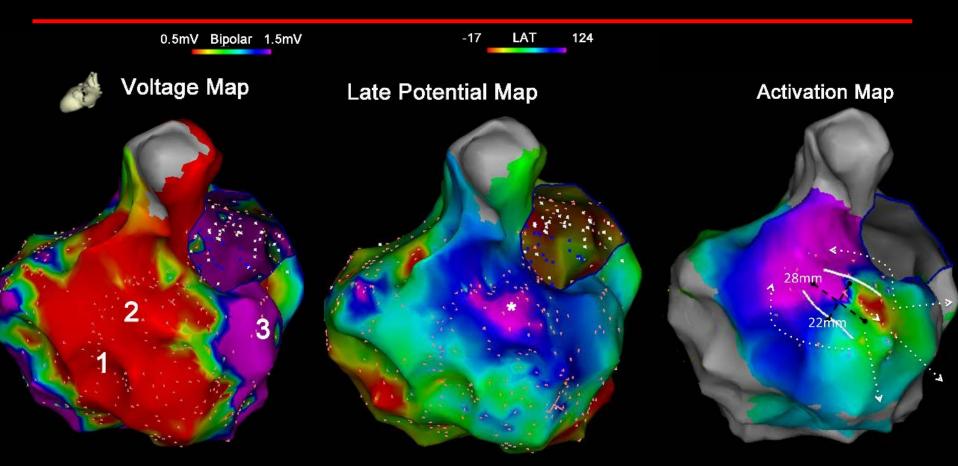
Nature Entity of Electrical Storm: Clustering and Unpredictable

Туре	ATP Seq	Shocks	Success	ID#	Date	VT-Mon VT	1	Yes	38 37	16-Jan-2018 16-Jan-2018
FVT	3	35J	Yes	65	05-Jul-2018	VT-Mon			36	16-Jan-2018
		Last Pi	rogrammer	Sess	ion 28-Jun-201	VT	2	Yes	35	16-Jan-2018
VT	6	35J	Yes	64	02-Mar-2018	VT	1	Yes	34	16-Jan-2018
VT-Mo	חג			63	02-Mar-2018	VT-Mon			33	16-Jan-2018
VT-NS	š			62	02-Mar-2018	VT	1	Yes	32	16-Jan-2018
VT	4	35J	Yes	61	23-Feb-2018	VT	1	Yes	31	16-Jan-2018
FVT	1	35J	Yes	60	22-Feb-2018	VT	2	Yes	30	16-Jan-2018
VT	6	35J	Yes	59	22-Feb-2018	VT	1	Yes	29	16-Jan-2018
VT	0			58	26-Jan-2018	VT	2	Yes	28	16-Jan-2018
VT-NS				57	26-Jan-2018	VT	4	Yes	27	16-Jan-2018
VT-NS				56	26-Jan-2018	VT	1	Yes	26	16-Jan-2018
VT-NS				55	26-Jan-2018	VT	4	Yes	25	16-Jan-2018
VT-NS	-			54	26-Jan-2018	VT	4	Yes	24	16-Jan-2018
VT	. 0			53	26-Jan-2018	VΤ	1	Yes	23	15-Jan-2018
VT-NS				52	26-Jan-2018	VT	3	Yes	22	15-Jan-2018
VT-NS				51 50	26-Jan-2018					
VT-NS VT	0			50	26-Jan-2018	VT	1	Yes	21	15-Jan-2018
VT-NS	100			49 48	26-Jan-2018 26-Jan-2018	VT	3	Yes	20	15-Jan-2018
VT-NS				47	26-Jan-2016 26-Jan-2018	VT	2	Yes	19	15-Jan-2018
VT-NS				46	26-Jan-2018	VT	1	Yes	18	15-Jan-2018
VT-NS	-			45	26-Jan-2018	VT	3	Yes	17	15-Jan-2018
VT	,			44	26-Jan-2018	VT	1	Yes	16	15-Jan-2018
VT-NS	-			43	26-Jan-2018	VT	1	Yes	15	15-Jan-2018
VT-NS				42	26-Jan-2018	VT	2	Yes	14	15-Jan-2018
VT-NS				41	26-Jan-2018	VT	1	Yes	13	15-Jan-2018

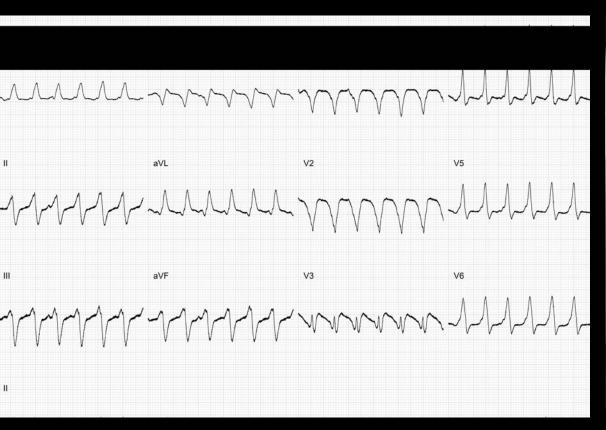

Case: Electric storm with left ventricular assist device

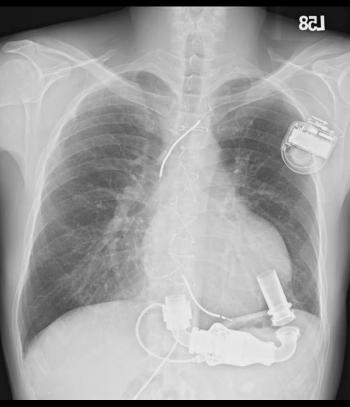


Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan

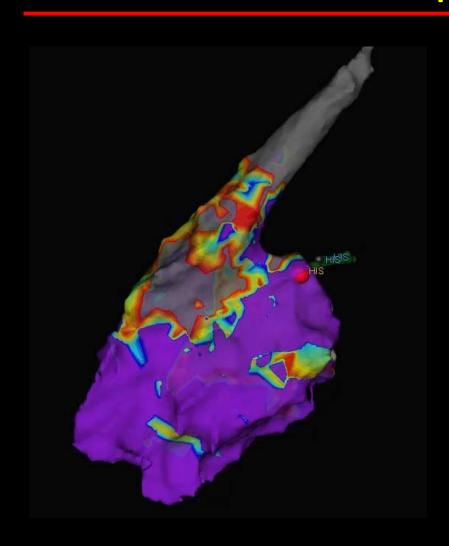

Patient information

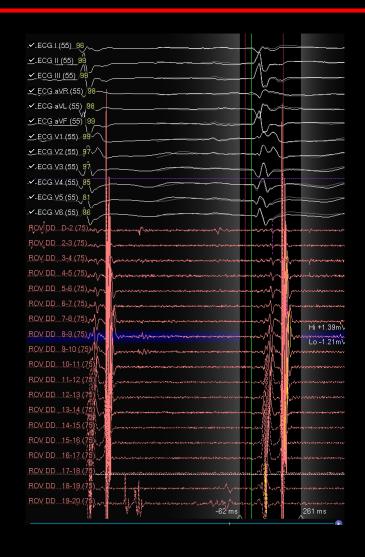
- 45-years-old male
 - Dilated cardiomyopathy → VT/VF → CPCR→
 ICD on 2007
 - Frequent ICD shock for VT, electric storm →
 Heart transplant evaluation (2009) → Ablation


LV Catheter ablation (2009)



VT isthmus was identified and ablation eliminate VT

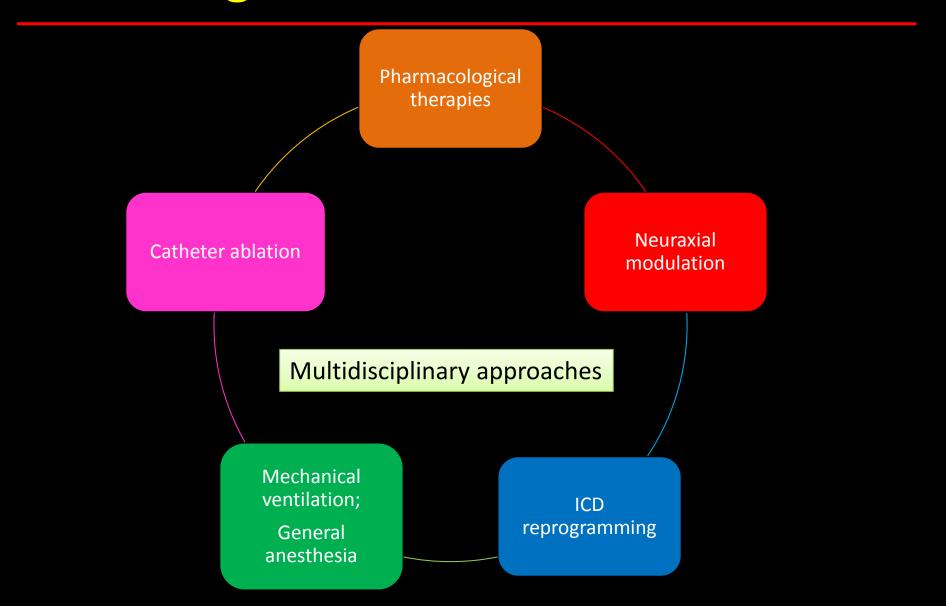

Stabilized heart function and no more electric storm until 2018


2018 VT Storm and Heart Stunning with LVAD Support

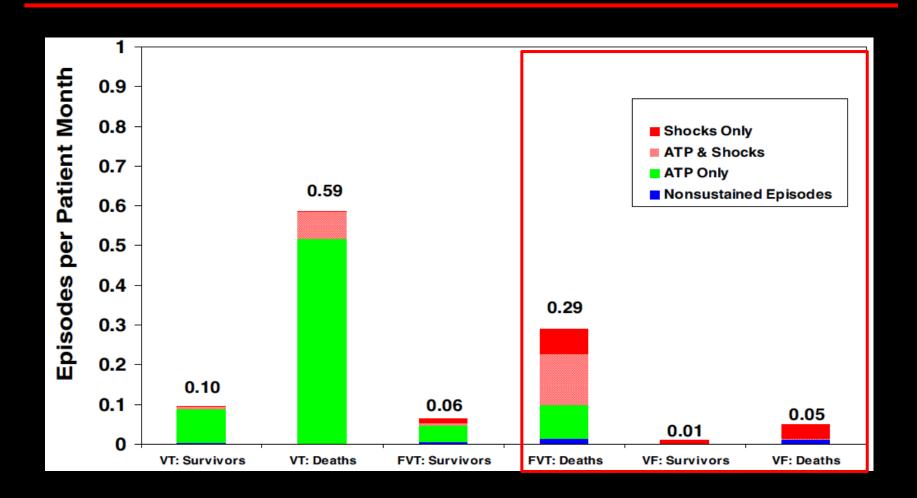
Abnormal fractionated signals in RV septum

No More Electric Storm After Ablation

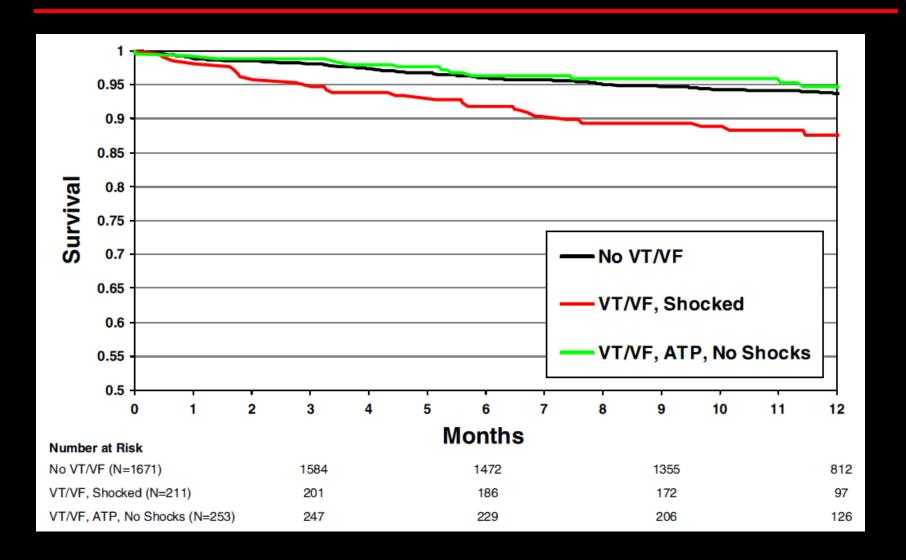
The patient has more time for the heat transplantation!

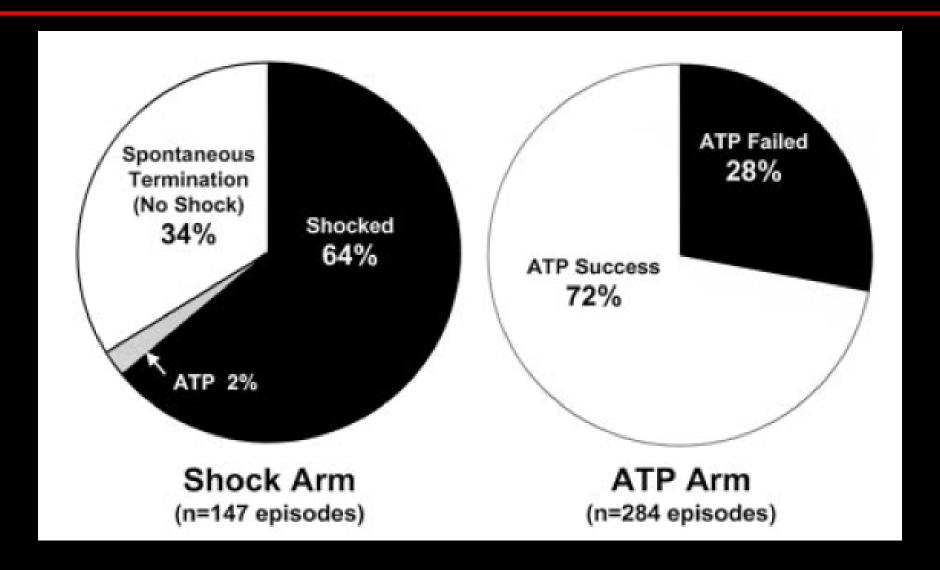

Lesson From Electric Storm

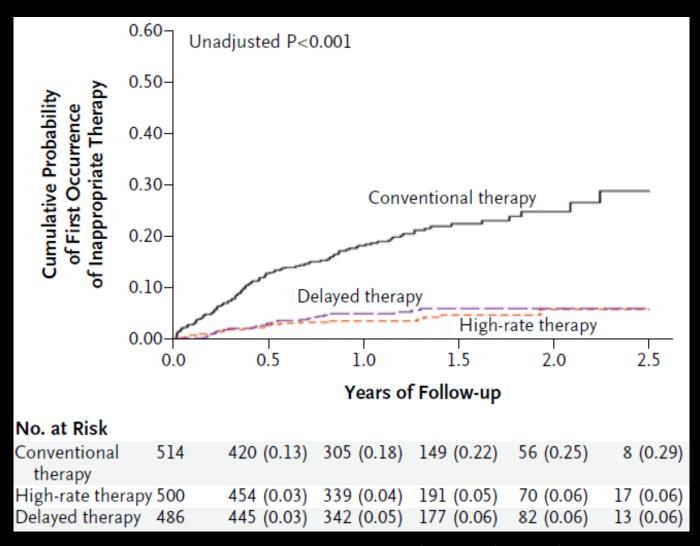
- Is it reversible?
 - Electrolyte imbalances,
 - Acute ischemia,
 - Pro-arrhythmic drug effects,
 - Hyperthyroidism,
 - Infections
 - Decompensated HF


Less than 10 %

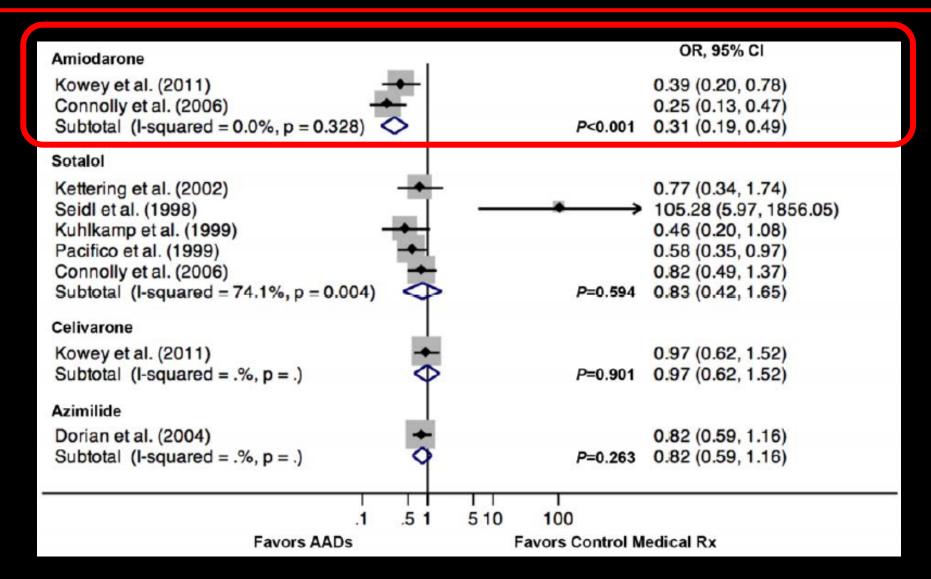
Reversible cause should be corrected


Management of electrical storm

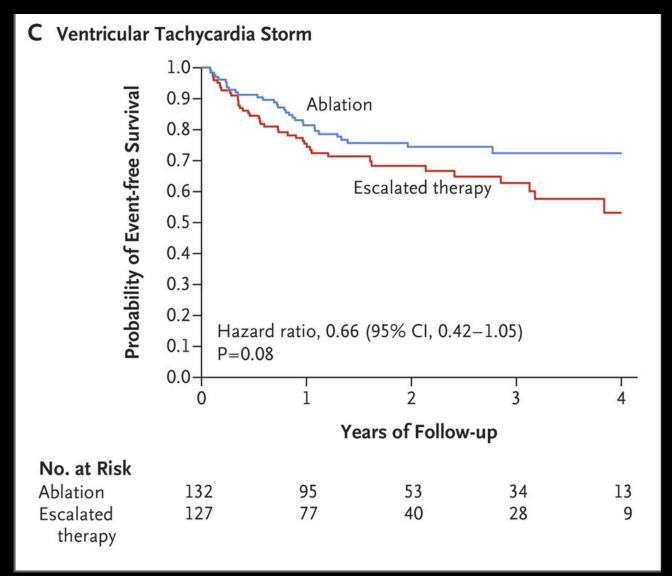

The effects of ICD shocks on mortality


ICD shocks contribute to worse mortality

ATP Reduced ICD Shocks



Delayed Therapy Reduced ICD shock



Moss AJ et al. N Engl J Med 2012; 367: 2275-2283

Amiodarone Reduced ICD Shocks

Ablation Better Than AAD for Electric Storm

Sapp JL et al. N Engl J Med 2016; 375: 111-121

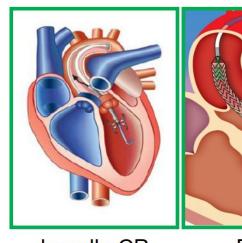
Catheter Ablation for Electric Storm

Ref.	No. of patients	Left ventricular ejection fraction	Epicardial procedures	Acute success	VT recurrence	ES recurrence	Death	Follow-up duration, mo
Sra et al ^[64]	19	27 ± 8	0%	87%	37%	-	0%	7 ± 2
Silva et al ^[65]	14	31 ± 13	20%	80%	13%	-	27%	12 ± 17
Carbucicchio et al ^[56]	95	36 ± 11	11%	89%	34%	8%	16%	Median 22
Arya et al ^[66]	13	33 ± 9	31%	100%	38%	-	31%	Median 23
Pluta et al ^[67]	21	-	0%	81%	19%	0%	0%	3
Deneke et al ^[68]	31	28 ± 15	9%	94%	25%	12%	9%	Median 15
Kozeluhova et al ^[69]	50	29 ± 11	0%	85%	52%	26%	29%	18 ± 16
Koźluk et al ^[70]	24	27 ± 7	7%	-	34%	12%	13%	28 ± 16
Di Biase et al ^[57]	92	27 ± 5	47%	100%	34%	0%	2%	25 ± 10
Izquierdo et al ^[71]	23	34 ± 10	0%	56%	-	35%	30%	Median 18
Jin et al ^[72]	40	21 ± 7	0%	80%	53%	-	25%	17 ± 17
Kumar et al ^[73]	287	27 ± 10 in ICM and	3.8% in ICM and	60% in ICM	49% in ICM and	17% in ICM and	25% in ICM	Median 42
		33 ± 16 in NICM	24% in NICM	and 50% in	64% in NICM	27% in NICM	and 28% in	
				NICM			NICM	
Muser et al ^[59]	267	29 ± 13	22%	73%	33%	5%	29%	Median 45

Effective in acute management and long-term electric storm recurrence

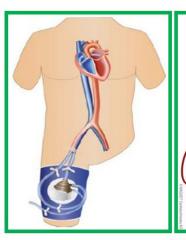
Acute Mechanical Circulatory Support Options for the LV

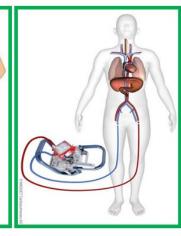
Continuous Flow Pumps


Pulsatile

Axial-Flow


Centrifugal Flow


IABP

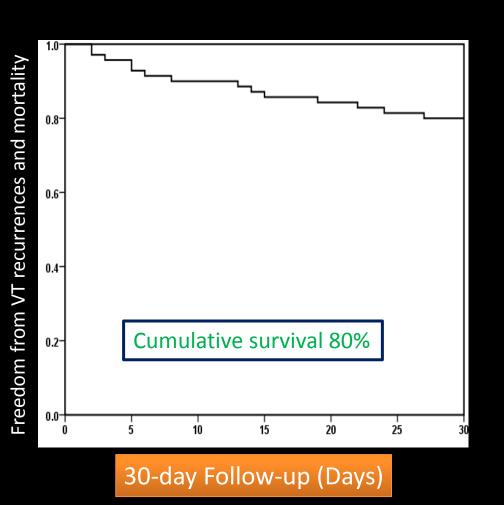

Impella CP

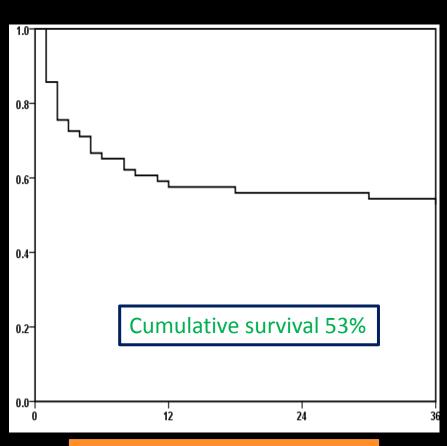
PHP *

TandemHeart

VA-ECMO

Intracorporeal

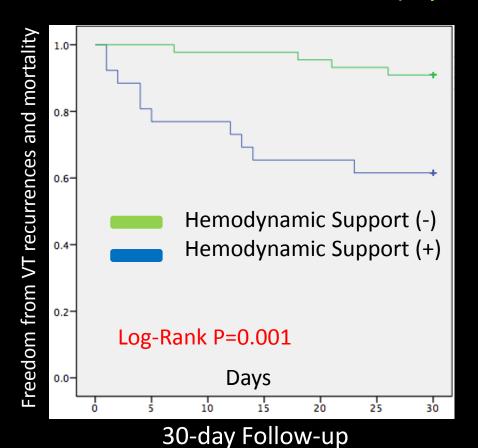

Extracorporeal

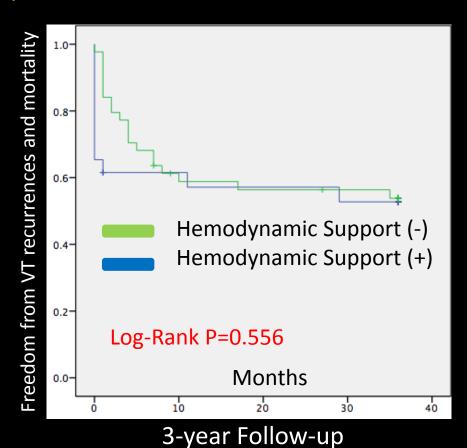

* Investigational

Taipei Experience: Rescue Ablation for Electric Storm Requiring Circulation Support

	• •	ES without circulation support	
	(group 1; N=26)	(group 2; N=44)	P value
Male gender (%)	96%	84%	0.253
Age, mean ± SD	67±15	46±17	< 0.001
BMI, kg/m2	27 <u>±</u> 12	25±4	0.254
Etiology:			< 0.001
ICM (%)	65%	18%	
NICM (%)	35%	14%	
Comorbidity			
DM (%)	52%	9%	< 0.001
CAD (%)	70%	32%	0.003
HTN (%)	78%	41%	0.004
renal failure, Cr >1.5 (%)	58%	9%	< 0.001
Serum Cr, mg/dl	2.5 ±2.0	1.2 ±0.5	< 0.001
Heart function			
NYHA Fc III / IV (%)	65%	39%	0.039
LVEF %	31±13	42±13	0.047
valvular dysfunction (%)	13%	9%	0.616

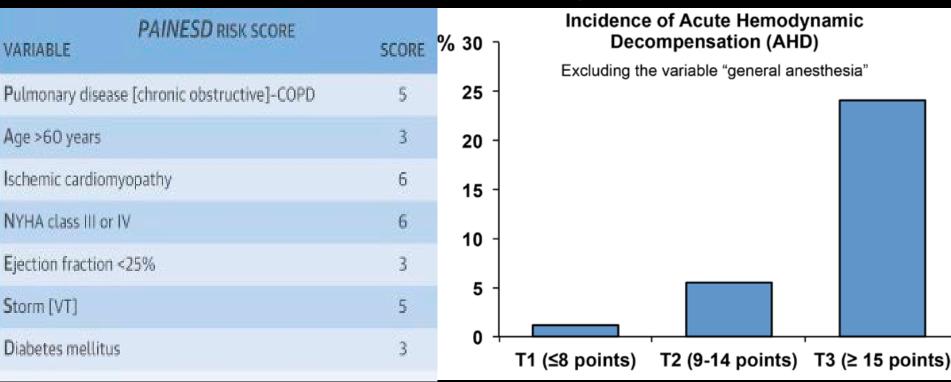
Taipei Experience: The Overall Outcome of Electric Storm Ablation





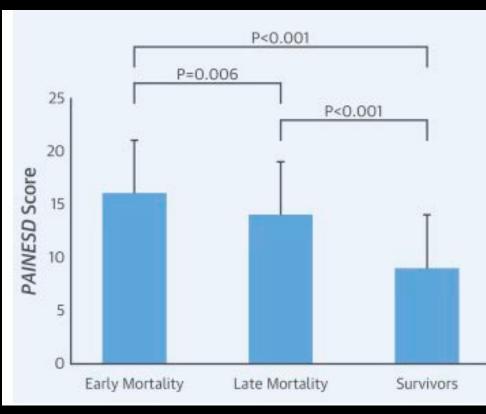
3-year Follow-up (months)

Taipei Experience of Electric Storm Ablation: Clinical Impact of Unstable VT/VF


Patients undergoing rescue ablation for unstable VT/VF requiring hemodynamic support had worse short-term outcome but similar midterm (3 years) outcome

Who Need Hemodynamic Support?

High risk: more incidence of acute heart decompensation during ablation



Low

medium High Risk

Predictors of Early Mortality

VARIABLE PAINESD RISK SCORE	SCORE
Pulmonary disease [chronic obstructive]-COPD	5
Age >60 years	3
Ischemic cardiomyopathy	6
NYHA class III or IV	6
Ejection fraction <25%	3
Storm [VT]	5
Diabetes mellitus	3

Higher score was associated with early mortality

Santangeli P et al. J Am Coll Cardiol. 2017;69(17):2105-2115

Take Home Message

- Reversible cause of electric storm should be identified
- Optimal ICD programing could decrease repetitive shock
- Catheter ablation is effective in controlling ischemic heart disease with low EF and electric storm.
- Hemodynamic support is important for acute LV failure and preventing heart decompensation in high risk patients